Only a subset of the binary cell fate decisions mediated by Numb/Notch signaling in Drosophila sensory organ lineage requires Suppressor of Hairless.
نویسندگان
چکیده
In Drosophila, an adult external sensory organ (bristle) consists of four distinct cells which arise from a sensory organ precursor cell via two rounds of asymmetric divisions. The sensory organ precursor cell first divides to generate two secondary precursor cells, IIa and IIb. The IIa cell then divides to produce the hair cell and the socket cell. Shortly after, the IIb cell divides to generate the neuron and the sheath cell. The membrane-associated protein Numb has been shown to be required for the first two asymmetric divisions. We now report that a new hypomorphic numb mutant not only displays a double-socket phenotype, due to a hair cell to socket cell transformation, but also a double-sheath phenotype, due to a neuron to sheath cell transformation. This provides direct evidence that numb functions in the neuron/sheath cell lineage as well. Those results, together with our observation from immunofluorescence analysis that Numb forms a crescent in the dividing IIa and IIb cells suggest that asymmetric localization of Numb is important for the cell fate determination in all three asymmetric cell divisions in the sensory organ lineage. Interestingly, we found that in the hair/socket cell lineage but not the neuron/sheath cell lineage, a Suppressor of Hairless mutation acts as a dominant suppressor of numb mutations whereas Hairless mutations act as enhancers of numb. Moreover, epistasis analysis indicates that Suppressor of Hairless acts downstream of numb, and results from in vitro binding analysis suggest that the genetic interaction between numb and Hairless may occur through direct protein-protein interaction. These studies reveal that Suppressor of Hairless is required for only a subset of the asymmetric divisions that depend on the function of numb and Notch.
منابع مشابه
Su(H)-independent activity of Hairless during mechano-sensory organ formation in Drosophila
Formation of mechano-sensory organs in Drosophila involves the selection of neural precursor cells (SOPs) mediated by the classical Notch pathway in the process of lateral inhibition. Here we show that the subsequent cell type specifications rely on distinct subsets of Notch signaling components. Whereas E(spl) bHLH genes implement SOP selection, they are not required for later decisions. Most ...
متن کاملThe Drosophila Numb protein inhibits signaling of the Notch receptor during cell-cell interaction in sensory organ lineage.
Specification of unequal daughter cell fates in the Drosophila external sense organ lineage requires asymmetric localization of the intrinsic determinant Numb as well as cell-cell interactions mediated by the Delta ligand and Notch receptor. Previous genetic studies indicated that numb acts upstream of Notch, and biochemical studies revealed that Numb can bind Notch. For a functional assay of t...
متن کاملLethal Giant Larvae Acts Together with Numb in Notch Inhibition and Cell Fate Specification in the Drosophila Adult Sensory Organ Precursor Lineage
The tumor suppressor genes lethal giant larvae (lgl) and discs large (dlg) act together to maintain the apical basal polarity of epithelial cells in the Drosophila embryo. Neuroblasts that delaminate from the embryonic epithelium require lgl to promote formation of a basal Numb and Prospero crescent, which will be asymmetrically segregated to the basal daughter cell upon division to specify cel...
متن کاملIntra-lineage Fate Decisions Involve Activation of Notch Receptors Basal to the Midbody in Drosophila Sensory Organ Precursor Cells.
Notch receptors regulate cell fate decisions during embryogenesis and throughout adult life. In many cell lineages, binary fate decisions are mediated by directional Notch signaling between the two sister cells produced by cell division. How Notch signaling is restricted to sister cells after division to regulate intra-lineage decision is poorly understood. More generally, where ligand-dependen...
متن کاملNotch regulates numb: integration of conditional and autonomous cell fate specification.
The Notch cell-cell signaling pathway is used extensively in cell fate specification during metazoan development. In many cell lineages, the conditional role of Notch signaling is integrated with the autonomous action of the Numb protein, a Notch pathway antagonist. During Drosophila sensory bristle development, precursor cells segregate Numb asymmetrically to one of their progeny cells, render...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 124 22 شماره
صفحات -
تاریخ انتشار 1997